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Abstract 

This paper presents an interesting and simple relation between twistor spinors and conformal 
vector fields by a finite-dimensional &-graded anticommutative algebra. Examples are given, where 
this algebra even is a graded Lie algebra (or a super Lie algebra in other terminology). 
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0. Introduction 

Twistor spinors were first introduced in mathematical physics (see [22]). In mathematics, 
the twistor equation appeared as an integrability condition for the canonical almost complex 
structure of the twistor space of an oriented four-dimensional Riemannian manifold [ 11. In 
[18] Lichnerowicz introduced the twistor spinors as zeros of the conformally invariant 
twistor operator D and started their systematical investigation (see [ 19-211). Friedrich (see 
[ 111) studied the zeros and conformal invariants (“first integrals”) of twistor spinors and 
their conformal relation to Killing spinors in the case of arbitrary Riemannian manifolds. 

We consider Riemannian spin manifolds (M, g) of dimension II > 3. A twistor spinor is 
a spinor field q satisfying the differential equation 

for all vector fields X, where D denotes the Dirac operator. 
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In this paper we associate to two spinor tields bp and @ a vector field V by the equation 

gW, Xl = Imb, X. 1cr) 

for all vector fields X. It can easily be shown that the vector field is conformal if q and $ 
are twistor spinors. 

All conformal vector fields together with all twistor spinors form a graded algebra A, 
which illustrates that there is a lot of structure between these rather different geometrical 
objects. Graded algebras, especially graded Lie algebras became interesting for physi- 
cists in the context of supersymmetries related to particles of different statistics [7]. Such 
anticommutative &-graded algebras in the literature on mathematical physics also occur 
as conventional superconformal algebras (SCA) [9]. Such a conventional superconformal 
superalgebra is defined to be a Z2-graded Lie algebra, however the Lie algebra requirement, 
that means the graded Jacobi identity, is dropped. Also this is exactly the situation we ob- 
tained here. Sometimes it is required that the even part of this graded algebra contains the 
Virasoro algebra as a Lie subalgebra. However, there exists no universal definition, fixing 
what a superconformal algebra could or should not contain, however most commonly one 
works within the class of &-graded anticommutative algebras. 

For the sake of completeness we recall in Section 1.1 some facts concerning twistor 
spinors on Riemannian spin manifolds. The main subjects are contained in Sections 1.2 and 
2.2. First we describe the graded algebra A, where the even part consists of all conformal 
vector fields, whereas the twistor spinors form the odd part. We then introduce a derivative 
z of spinor fields in the direction of conformal vector fields, which is defined according 
to the twistor equation. It turns out that the introduced derivative c is in fact the product 
of a conformal vector field and a twistor spinor in the graded algebra A. Thus, one might 
believe that A is not only a graded algebra but also a graded Lie algebra. In Section 3.2 we 
give two examples of such graded Lie algebras and show in a third example, however, that 
this is not in general so. 

1. The graded algebra of conformal vector fields and twistor spinors 

1.1. Twistor spinors 

Let (M,g) be an n-dimensional Riemannian spin manifold with n > 3 and let S be the 
spinor bundle of (A4, g) for a fixed spin structure Q + M. A spinor field is a smooth section 
up E f(S) of S. We denote by ( , ) the standard Hermitian inner product on S. The Levi- 
Civita connection V on (M, g) induces a covariant derivative, the so-called spinor derivative 
on the spinor bundle which will also be denoted by V. Further, let X . p = F(X @J PO> be 
the Clifford multiplication of the vector X by the spinor q. For the Clifford multiplication 
we have 

X. Y + Y. X = -2g(X, Y) ids. 

With respect to the Hermitian product on S the Clifford multiplication satisfies 
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(X. cp, @) = -((o, x. 1cI). 

Moreover, the spinor derivative has the following properties: 

XkL @I = (Vx% 1cr) + (VP, Vx@)t 

V‘y(Y . cp) = V,yY qJ + Y vxyl. 

The Dirac operator D is the first-order differential operator defined by 

133 

D = k o V : T(S) + T(T’*M @ S) g r(TM @I s) + f(s). 

Here we identify the bundles T * M and TM via the metric g. Locally the Dirac operator 
can be written as 

” 

for(p E T(S),whereet, . . . . e, is a local orthonormal frame. The mapping p : TM 63 S + 
TM @ S defined by 

for a local orthonormal frame et, . . . , e, on (M, g), is a projection of TM @I S onto the kernel 
ker p of the Clifford multiplication. The twistor operator ?) is defined as the composition 
of the spinor derivative and the projection p, 

D= poV: f(S)+ f'(T*M@ S)Z r(TM@ S)+ r(kerF). 

Locally the twistor operator is given by 

for cp E T(S). A spinor field p is called a twistor spinor if and only if z)cp = 0. Equivalently, 
p is a twistor spinor if and only if cp satisfies the twistor equation 

for all vector fields X. 
The twistor operator P is conformally invariant in the following sense: Let 2 = hg be 

a conformal change of the metric g, where )c is a positive real-valued function on M, and 
let - : S + ?? denote the natural isomorphism of the corresponding spin bundles. We then 
have the relation 

ql = ,‘/42)()c’/4q) 

for cp E r(S), where B denotes the twistor operator in 3. 

(1) 
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On the space ker 27 of all twistor spinors we have two conformal invariants 

C, = Re(Dq, d 

whereer, . . . , e, is an orthonormal frame on (M, g). Further, if cp E ker D , then 

Vx(Dq) = id(X). cp 

for all vector fields X, where L denotes the (1 ,l)-tensor defined by 

Here R denotes the scalar curvature and Ric is the (l,l)-Ricci tensor. Obviously, L is 
symmetric with respect to the metric g, i.e. 

g(X, L(Y)) = g@(X), y>. 

Moreover, any twistor spinor satisfies 

Rn 
D2v = ~ 

4(n - l)(p. 

Finally, we recall that the space of all twistor spinors is finite dimensional, namely (see 

1111) 

dime ker 2, 5 2[“/2]f1. 

1.2. The graded algebra A 

We will concern with gradings with respect to the ring Z2 = (0,l). 
For a conformal vector field X with Lxg = 2hg for some function h, we call h the 

divergence function of X. Also for two conformal vector fields X and Y with divergence 
functions hx and hy the commutator [X, Y] is a conformal vector field with divergence 
function X(hy) - Y(hx). 

Definition 1.1. Let q and I+Q be any spinor fields. We then define cp o + to be the vector 
field 

n 

(PO + = CIm(v,ej . +)ej, 

j=l 

whereet, . . . . e, is a local orthonormal frame. 
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From Im(q, ej . +) = - Im (v, ej . @) = - Im(ej . @, lo) = Im(@, ej . (p) we see 

Definition 1.2. Let X be a conformal vector field with Cxg = 2hg. Further, let cp be any 
spinor field. We then define a spinor field X o q by 

Xo~=Vxcp+$t(VX).q2, where T(VX) = cy=t VejX . ej + (n - 2)h 

for a local orthonormal frame e 1, . . . , e, . 
Obviously, X o (fq) = X(f)qo + fX o cp for any complex-valued function f. 

Remark. It is clear that the definitions of cp o I+!J and X o cp are independent of the choice 
of the local orthonormal frame ei , . . . , e, . In the following we suppose that et, . . . , e, is 
an orthonotmal frame arising from one in T, M by parallel displacement along geodesics, 
x E M. Then Vej(x) = 0. 

The products defined above satisfy the following derivative property in relation to the 
Lie derivative of vector fields: 

Proposition 1.3. LA (o and $J be any spinor$elds and suppose that X is any conformal 

vector$eld. Then 

ProojI First of all we state 

VX(VO~L)=~WVX~~ , ej . @)ej + 2 Im(cp, ej . Vx+)ej 

j=l 

Furthermore. we deduce 

W(o , ej . ei VeiX . $)ej + (n - 2)hp o $I 
i. j=l 

+ 2 2 &jIm(cp, V,! X . $)ej 

i, j=l 

-  2 2 gPe,X, ej) Im(V, ei . *)ej 
i,j=l 

=-qo(r(VX)~+)+2(n-2)hqo@-2nh~o$ 

+2 2 gCvC?jx , ei) Im(q, ei . +)ej - 2V44~X 
i,j=l 
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- 2 2 gWei X, ej) Im(p, ei . +)ej - 2V,,*X 
i, j=l 

+ 4h 2 6ijIm(q, . +)fZj ei 
i,j=l 

where h is given by Cxg = 2hg. Hence, 

(t(VX) . cp) 0 $4 + cp 0 (t(VX) . @) = -4v,,~x. 

Together, these equations imply that 

(xo~o)o~+cpo(xo~)=(vxcp)o1cr+cpo(vx~)-v~o~x 

= [X,cp 0 @I = Cx(v 0 @I. 0 

Let B be the graded vector space which has the complexification of the Lie algebra of all 
vector fields on M as even part Bn and the vector space of all spinor fields on M as odd part 
Bt . By means of the definitions above and setting X o Y = [X, Y] for vector fields X and 
Y and q o X = -X o cp for any vector field X and any spinor field cp, B becomes a graded 
algebra.SinceXoY=[X,Y]=-[Y,X]=-YoX,Xo6o=-cpoXand~oo==oo 
for homogeneous elements X, Y E Bn and cp, $ E Br , B is graded anticommutative. 

Next we are going to show that all conformal vector fields and the solutions of the twistor 
equation define a finite-dimensional graded subalgebra A of B. 

Proposition 1.4. Let cp and $ be any twistor spinors on (M, g). Then the vectorjeld q.~ o I+!J 

is a conformal vectorjeld. In fact, we have 

L,o+g = 2hg, 

where 

h = i ImI@, W) - (DC $)I. 

ProojI Using the definition of q o $ and the twistor equation, we have 

g(Vy(cp 0 v+), X) = f Im((X. Y. &I, +) - (q, X. Y D9)l 

for any vector fields X and Y. This implies 

W:,o~gNX, Y> = i Who, W) - (Dv, 1cF)MX, Y). 

Lemma 1.5. Let X be a conformal vectorfield with divergence function h. Then 

r(VX) . Y = Y. t(VX) + 4hY - 4VyX 

for any vector$eld Y. 



K. Habermann/Journal of Geometry and Physics 18 (1996) 131-146 137 

Proo$ It is 

r(VX)-Y=~Y-V~jX-~j+2&(V~,X,Y)ej-2VyX+(n-2)hY 
j=l j=l 

=Y,t(VX)+4hY-4VYX. 

Lemma 1.6. Let X and Y be conformal vectorjields. Then 

t(VX) . t(VY) - t(VY) . t(VX) = 4C(V,qx,Y ej - V[e,, Y]X . ej). 
j=l 

Remark. The curvature 72’ of the spinor derivative defined by 

7zS(X, Y)6p = VXVY40 - VYVXP - V[X, YIP 

is related to the curvature ‘73 of the Riemannian manifold (M, g) by 

R'(X,Y)cp = a ,$ R(X,Y,ei,ej)ei .ej .cp. 

Z,J=l 

Proposition 1.7. We have 

[x,Y]ocp=xo(Yocp)-Yo(Xocp) 

for any conformal vector fields X and Y and for any spinorjield q. 

Proof: Using the Bianchi identity 

R(X, Y)ej + R(Y,ej)X + R(ej, X)Y = 0, 

we see that 

2 72(X, Y,ei,ej)e; . ej 
i,j=l 

=k R(Y,t?j)X +X(ej,X)Y) . ej 
j=l 

= kVcj(VxY -VyX)-ej+kVy(VqX.ej) 
j=l j=I 

n n 
-CVX(V~jY.e~)+CIV~~j,Y]X-v[~j,X]y).eJ 

j=l j=l 

= T(V[X, YI) - (n - 2)h[x. YI + Vy(r(VX>) - (n - 2)YChx) 

-Vx(t(VY)) + (n - 2)X(hr) + &VL~,, YIX - V[ej, x]Y) . ej, 
j=l 

where the functions h[x, ~1, hx and hy are the divergence functions according to the con- 
formal vector fields [X, Y], X and Y. By the previous lemma, this becomes 
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R-(X, Y, ei,ej)ei . ej = t(V[X, Y]) + V,(T(VX)) - Vx(r(VY)) 
i,j=l 

-$(VX) . t(VY) - r(VY) . t(VX)} 

such that the equation 

0 =7$(X, Y)cp + $V,(r(VY)) . cp - $,(r(VX)) . $7 - $(V[X, Yl) . (p 

+&(vx>f r(VY) - t(VY) . t(VX)} . cp 

is satisfied for any spinor field q. On the other hand, it is easy to see that 

Xo(Yocp)-Yo(Xoq7)-[X,Y]ocp 

= @(X, Y)cp+&(t(VY)) . p$vy(t(vx))~ (L+t(V[X, YI) . cp 
+&(vx). t(VY) - r(VY) . t(VX)} . cp. 

which concludes the proof. 

Lemma 1.8. I f  cp is a twistor spinal; then we have 

2 R-(X, Y, ei, f?j)ei . ej q = 2(X. L(Y) - Y. L(X)) $J 
i,j=l 

for any vector$elds X and Y. 

Pro05 Using the twistor equation and the relation 

V,y(Dq) = inL(X) cp 

for twistor spinors, we obtain 

vxvyip = Vo,ycp-;Y. L(X). Cp 

for the twistor spinor cp and for any vector fields X and Y. Thus 

2 R(X, Y, ei,ej)ei . ej . cp = 47ZS(X, Y)(o = 2(X. L(Y) - Y . L(X)). q. 0 
i,j=l 

Corollary 1.9. Let q~ be a twistor spinor and X any conformal vectorfield with divergence 

function h. Then 

&(t(vx)) .q = 2{x. L(Y) - Y . L(X) + Y. gradhI. v  

for all vector-fields Y. 

Proposition 1.10. Let X be any conformal vectorjeld. Then for any twistor spinor q~ the 

product X o 40 is a twistor spinal; too. 
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Proo$ Applying the previous lemma, we deduce 

Vy(Xocp) = Y. -AL . rp + igradh . cp - &r(VX) . Drp - :hW 
I 

for any vector field Y, where h is given by Cxg = 2hg. Setting @ the expression in braces 
on the right-hand side, i.e. 

@ = -iL(X).p+igradh.p- &r(VX). Dq- :hDq, 

the last equation becomes 

Vy(X 0 $9) = Y . I). 

Therefore, the twistor equation 

Vy(Xoq)+;Y.D(Xo+O 

is satisfied. 0 

Consider the Lie algebra of all conformal vector fields on M and define A0 to be the 
complexification of this algebra. The dimension of the Lie algebra of all conformal vector 
fields is less than or equal to i (n + l)(n +2) [ 151. Thus, Ao is a finite-dimensional subspace 
of Bo. Furthermore, let A1 = kerP c Br be the complex subspace of all twistor spinors 
on M. At is also a finite-dimensional vector space, since the dimension of ker P is finite. 
Now let A be the graded vector space A0 @ Al. 

Theorem 1.11. Let (M, g) be a Riemannian spin manifold admitting twistor spinors. Then 
the graded vector space A dejined above is a finite-dimensional graded anticommutative 
algebra. 

Pro05 This is a consequence of Propositions 1.4, 1.7 and 1 .lO. 0 

Example. For M = W the algebra A has maximal dimension (cf. [ 111). 

2. The derivative z of spinor fields 

The purpose of this section is to introduce a derivative z of spinor fields in the direction 
of conformal vector fields. The derivative we are going to define is related to the conformal 
invariance of the twistor equation. 

The general question of constructing a Lie derivative for spinor fields is studied for 
instance by Kosmann in [ 161 and Bourguignon and Gauduchon in [6]. The paper of Bour- 
guignon and Gauduchon gives a geometric construction of the so-called metric Lie deriva- 
tive of spinor fields. The problem is to compare spinor fields for different metrics, since a 
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diffeomorphism F transforms the metric tensor g by F : g H F’g and the spinor fields 
over (M,g) will be transformed into spinor fields over (M, F*g). But, if the metrics are 
conformally equivalent there exists a canonical isomorphism between the corresponding 
spinor bundles (see [2]) which makes it possible to define a Lie derivative for spinor fields 
in the classical way of defining a Lie derivative. Also one sees that the so-called metric Lie 
derivative of a spinor field cp with respect to the conformal vector field X, introduced in [6], 
here is nothing else but the Lie derivative CX~. 

2. I. The invariance of the twistor spinors under dzreomorphisms 

In order to define the derivative : we show first an invariance property of twistor spinors 
under diffeomorphisms. 

Let (M, g) be an n-dimensional Riemannian spin manifold and let F be any orientation 
preserving diffeomorphism of M. Then F induces an isomorphism F* of the SO(n)-frame 
bundles PF and P according to the metric tensors F*g and g 

F,:PF + P (el, .,e,) H (Feel, . . . , Fee,). 

This isomorphism maps orthonormal frames with respect to F*g to orthonormal frames 
for g. 

Let (Q, f) be a fixed spin structure for (M, g) and let (Q F, f’) be a spin structure for 
(M, F*g) such that F* lifts to an isomorphism p* : QF + Q, i.e. such that the diagram 

p* 
QF - Q 
f’ 

1 1 
f  

PF --+ P 

F. 

commutes. Let S = Q xP A” and SF = QF xP A” be the corresponding spinor bun- 
dles, i.e. the vector bundles associated to the spin structures via the spinor representation 
p : Spin(n) + GL(A”). A spinor field over (M, g) is a section of the spinor bundle S, or, 
equivalently, a p-equivariant map v : Q + A”. Now define the transformed spinor field 

V-‘hcp by 

(F-‘),v = (o 0 &, 

where a spinor field is regarded as an equivariant map. Then (F-‘),cp is a spinor field over 
(M, F*g) with respect to the spin structure (Q F, f’). 

Obviously, F is an isometry between the Riemannian manifolds (M, g) and (M, F*g). 

Thus, 

V~F-l,e,CF-‘),Y = (F-‘),WXY) 
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for vector fields X and Y on (M,g), where VF is the Levi-Civita connection of (M, F*g). 
This implies that the induced spinor derivative in SF which we also denote by VF satisfies 

Vf,-,)*,Fl),cp = (F-‘)*(vxd. 

Consequently, 

for the Dirac operator DF in SF. 
Finally, we have the following result. 

Proposition 2.1. If 60 E f(S) is a twistor spinor on (M, g) and F is an orientation pre- 

serving diffeomorphism of M, then the spinorjield (F-‘),(o E r(SF) is a twistor spinor 

on (M, F*g). 

2.2. Dejinition of z and relations to the product structure in A 

Let (D E r(S) be any non-trivial solution of the twistor equation for g. Then by Proposition 
2.1, the spinor field (@t’),p E r(@) solves the twistorequation with respect to the metric 
@:g. Since @rg = e20fg, we conclude from (1) that exp[-(a,/2)]1,((~,‘),(o) is a twistor 
spinor with respect to the metric g. In fact, setting 

$f = ,-SD mQ)*co)~ 

we see that 

B+i = ea~/2~t(eo~/2&f) = e"r/2~f(lr((~f-1)*p)f) = e*/2P'((@fp1),g7) = 0, 

where 2, is the twistor operator with respect to g, 8 is the twistor operator on (M, @:g), 
and -I : S + Sar denotes the natural isomorphism of the corresponding spin bundles. 
Further, it is defined to be the inverse of -I. 

Let us now define the derivative z by 

One verifies that 

= -;hq + Cxq = Lx40 - ;((Lxg)#)q, 

where (fZxg)# denotes the endomorphism given by Cxg and g and satisfies 

(Lxg)# = 2h id. 

Thus we have: 
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Proposition 2.2. Let X be a conformal vectorfield on M and q~ any twistor spinal: Then 
the derivative z of q in direction of X is the product of X and cp in the algebra A, i.e. 

-cxql=xoqJ. 

Proof: This follows from 

LXq = VXCp + f gCvejx . ej - ej V,X) ‘qo. 
I=1 

See [ 161 or [6]. In the case that X is a conformal vector field with divergence function h 
this is equivalent to 

Cxcp = Vxq~ + a $ VelX. ej . (D + ihq. 
J=l 

0 

Now Proposition 1.7 reads as&x, rlq = [TX, Cr]v. Furthermore, Proposition 1.3 would 
take the form 

Lx(40 0 9) = (Cxv) 0 * + v 0 (Zx@) 

or, equivalently, 

Cx(q 0 @) = wxqo) 0 It+ + cp 0 (Lx@). 

3. Examples and applications 

3.1. Imaginary Killing spinors 

A spinor field cp E f’(S) is called an imaginary Killing spinor to the Killing number ik 
for h E W\ {0) if the differential equation 

Vxcp=iiX.cp 

is satisfied for all vector fields X on M. Then cp is atwistor spinor, since &J = -iinp. 

Proposition 3.1. Let cp, @ and x be imaginary Killing spinors, all to the same Killing 
number ik. Then the spinor$eld (~0 o $J) o x is an imaginary Killing spinor to the Killing 
number -ii. 

Proo$ Let X = cp o @. Then X has the divergence function h = 2h Re@, $) with gradient 
grad h = 4k2X. One verifies that 

VyX = 2hRe(q, @)Y = hY 

for all Y. Thus, t(VX) = -4h Re((p, +) = -2h, which gives 

Xox =ikX.x - ;hX. 
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Finally, 

Vr(X o x> = iAVrX. x - 1*X. Y . x - ig(gradh, Y)x - ;hiAY . x 

= ihY . x + h*Y . X. x + 2A*g(X, Y)x - 2h2g(X, Y)x - $hiAY. x 

= -iA.(ihX . x - :/2x} = -ik(X 0 x) 

for any vector field Y. 0 

Remark. There exist odd-dimensional manifolds with non-trivial Killing spinors to the 
Killing number ih and no Killing spinor to the Killing number -iA [3]. 

3.2. Graded Lie algebras 

Going back to the graded algebra A constructed in Section 1.2 by the twistor equation, 
we note that X o Y for vector fields X and Y was defined to be the Lie bracket [X, Y] of these 
vector fields. Understanding the composition X o q of a vector field X and a spinor field p 
as the derivative c of q in direction of the vector field X described in the previous section 
the whole arrangement suggests that the graded algebra A with the bilinear operation o is 
a graded Lie algebra. For this a graded Jacobi identity must be satisfied. The graded Jacobi 
identity is given by four identities according to the degrees of the homogeneous elements. 

We have the following three Jacobi identities. Obviously, 

[X, [Y, z11+ [Y, [Z, WI + [Z, [Xv Yll = 0 

for the vector fields X, Y, Z in Ao. By Proposition 1.7 the equation 

is satisfied for vector fields X, Y in A0 and any spinor field in A 1. Further, Proposition 1.3 
gives 

for any vector field X in A0 and spinor fields cp, $ in A 1. 
The fourth Jacobi identity would say that 

holds for spinor fields cp, I++ and x in A 1. 
In the following we give examples to discuss this fourth Jacobi identity. 

Example. If X is a Killing vector field and up is a parallel spinor field, then X o cp is parallel 
too. Furthermore, for any parallel spinor fields (p, $ and x one verifies (qo@) o x = 0. Thus, 
the fourth Jacobi identity for parallel spinor fields is trivial. Consequently, the subalgebra 
of A consisting of all Killing vector fields and parallel spinor fields is a graded Lie algebra. 
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Example [3]. Let (F4, h) be a K3-Surface with the Yau-metric, and consider the warped 
product 

(M’,g) := (F4 x R,e-4A’h ~33 dr2) fork E R\{O). 

Further, let K(M’, g)ik denote the space of all Killing spinors of (M’, g) to the Killing 
number ih. Then 

dimK(M’,g)i,: = 2 and dimK(M5,g)-i* = 0. 

According to [ 12, Proposition 2.21, this gives 

kerD = K(M’,g)ii. 

Thus, by Proposition 3.1 we have (cp o $) o x = 0 for all p, $, x E kerD and the fourth 
Jacobi identity is satisfied. Finally, A is a graded Lie algebra. 

Counterexample. Here we will give a counterexample to the above idea, showing that the 
fourth Jacobi identity is not fullfilled in general. 

Let q E T(S) be an imaginary Killing spinor, i.e. q satisfies the differential equation 

for a real non-zero number A. The conformal vector field X = cp o p has the divergence 
function h = 2k.lq12. We deduce 

w 0 cp, (P) + ((0, x 0 cp) = (Vx%cp) + @o, Vx40) + :b - wlv12 

On the other hand, setting V,+,(x) = (X . q(x) : X E 7”MJ for x E M with (p(x) # 0, one 
has 

llxl12 dist2(icp, VP) = lcp12 - - 
IPI2 ’ 

i.e. 

11X1]2 - Iq14 = -Jqo12dist2(i(o, V,). 

Because of 

& = n2h2]q12dist2(i(p, Vv) 

for the constant Qlp (see [5, p.1571) we arrive at 
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In [4] Baum shows that the hyperbolic space is the only complete manifold admitting 
imaginary Killing spinors with QV > 0. Furthermore, there exist non-complete manifolds 
of non-constant sectional curvature carrying imaginary Killing spinors of this type [5]. 
Hence, for such a Killing spinor q the expression (X o (o, cp) + (cp, X o q) does not vanish. 
It follows that 

which contradicts the fourth Jacobi identity, since the fourth Jacobi identity for a spinor 
fieldcpinAl’gives(qoq)ocp=O. 
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